Sie sind hier: Startseite » Markt » Tipps und Hinweise

Das Datenvolumen wächst ständig


IT-Teams stehen in verteilten Umgebungen in der Cloud und vor allem in Hybrid-Cloud-Szenarien vor erheblichen Aufgaben, um Daten zu sichern und verfügbar zu halten
Fünf Disziplinen, in denen Künstliche Intelligenz und Machine Learning eine cyberresiliente Datensicherung automatisieren und verbessern


Von Uli Simon, Director Sales Engineering bei Commvault

Daten cyberresilient zu schützen, zu sichern und wiederherstellen zu können, ist für große Unternehmen oder für den gehobenen Mittelstand eine Aufgabe, die ohne den Einsatz von Künstlicher Intelligenz oder Machine Learning nicht mehr zu bewältigen ist. KI und ML helfen einerseits, sensible Datenbestände zu identifizieren und sie vor Cyberangriffen zu schützen. Andererseits rationalisieren und automatisieren sie die Sicherung von Daten in einer einheitlichen Datenplattform eines Unternehmens.

IT-Teams stehen in verteilten Umgebungen in der Cloud und vor allem in Hybrid-Cloud-Szenarien vor erheblichen Aufgaben, um Daten zu sichern und verfügbar zu halten. Sie kommen aber nicht mehr damit nach, alle dafür nötigen Informationen zu sichten und zu bewerten. Knappe Ressourcen und eingeschränkte Budgets können die Situation verschärfen, Denn auch bei geringeren Mitteln ist nur selten weniger und in der Regel eher mehr durch weiterwachsende Datenmengen oder komplexere Umgebungen zu leisten. Mit einer fortschrittlichen Plattform, die auf KI- und ML-Techniken basiert, können IT-Administratoren jedoch die Effizienz und Resilienz Ihrer Plattform erheblich verbessern. Data-Management-Plattformen lassen sich durch diese Technologien besser überwachen, ihr Betrieb in großem Umfang automatisieren und die Betriebsbereitschaft verbessern.

Disziplin 1: Abläufe automatisieren
Das Datenvolumen wächst ständig, die verfügbare Zeit, sie täglich zu sichern, bleibt begrenzt. Schließlich hat auch ein IT-Tag nur 24 Stunden. Herkömmliche Backup-Pläne beruhen auf statischen Regeln und daraus abgeleiteten Zeitplänen, um Daten so effizient und schnell wie möglich zu sichern. Herkömmliche statistische Ansätze, um Backup-Jobs zu planen, führen häufig zu komplexen Konfigurationen und Ineffizienzen, wenn die Wartezeiten für einen Job zu lange werden oder dieser das für ihn vorgesehene Zeitfenster überschreitet. Eine KI- und ML-unterstützte Backup-Plattform sagt durch den Einsatz von auf chronologischen, seriellen Daten aufbauendem maschinellem Lernen die einzelnen Laufzeiten der Jobs besser voraus und plant diese effizienter. Mit der Kalkulation der gewünschten Recovery Point Objectives (RPOs) bewertet sie Workloads nach den Kriterien der Geschäftsabläufe und stellt sicher, dass jeder Workload die entsprechende Priorität erhält. Dank solcher Automatismen können die IT-Teams die Zeitfenster für die Datensicherung minimieren, ohne selbst entscheiden zu müssen.

Disziplin 2: Ressourcenbedarf kalkulieren
Bei steigender Datenmenge muss eine Plattform zum Backup mit dem Datenwachstum skalieren, was zusätzliche Rechen- und Speicherressourcen erforderlich macht. Datenbestände können – freilich seltener - auch schrumpfen, etwa bei international tätigen Unternehmen, die sich aus geschäftlichen Gründen regional verkleinern. Ein solches Anpassen des Speicherbedarfs können IT-Administratoren nicht manuell vornehmen. Automatismen sind nötig, damit die Infrastrukturkosten nicht aufgrund einer verzögerten Entscheidung steigen. Machine-Learning-Techniken bewerten den zukünftigen Ressourcenbedarf in Echtzeit, indem sie die Trends des Datenwachstums analysieren und die erforderlichen Rechenressourcen zum Einhalten der definierten Service Level Agreements (SLAs) vorhersagen. Sie passen automatisch die Rechenressourcen je nach Bedarf an oder geben Hinweise, wenn ein Zukauf nötig ist.

Disziplin 3: Ressourcenauswahl optimieren
Darüber hinaus optimiert eine KI-gestützte Plattform die Auswahl von Rechenressourcen und berücksichtigt dabei, wie die Daten regional verteilt sind oder von wo sie etwa Standorte abrufen. So nutzt sie Rechenknoten effizient und schafft eine ausgewogen belastete und kostenoptimierte IT-Infrastruktur. Vor allem in der Hybrid Cloud kommt es darauf an, Ressourcen richtig zu verteilen.

Disziplin 4: Rationalisiert überwachen
Große IT-Infrastrukturen sind komplex und nicht alle Ereignisse lassen sich daher vorhersehen. IT-Verantwortliche können die alltäglichen Abläufe nicht mehr oder nicht korrekt überwachen. Nur wenige Fehler treten lediglich vorübergehend auf oder sind eine Routine-Angelegenheit und lassen sich ohne sofortiges menschliches Eingreifen beheben. Andere erfordern die Aufmerksamkeit von Fachkräften. Derart kritische Fehler bleiben aber ohne priorisierte und gefilterte Meldungen zu lange unentdeckt. KI- und ML-gestützte Plattformen sammeln daher kontinuierlich Daten aus den verschiedenen täglichen Backup-Vorgängen, analysieren sie und lernen, wie ein typisches Verhalten eines funktionierenden Backups sich darstellt. Machine-Learning-Algorithmen analysieren diese Daten, um zu unterscheiden, ob es sich bei länger dauernden Jobs oder abnehmender Leistung um eine Ausnahme, um das Ergebnis eines externen Ereignisses oder um ein erwartetes Ergebnis aufgrund der zunehmenden Größe und des Umfangs der Daten handelt. Die intelligente Analyse hebt Vorgänge hervor, die sich ein IT-Administrator anschauen sollte, und bietet ihm umfassende Informationen, um Fehler zu beheben oder kritische Probleme zu lösen. Bei Anomalien, wie ungewöhnlich hohen Ausfallraten oder verzögert abgeschlossenen Jobs, löst das System intelligent einen Alarm aus, so dass sich die Administratoren auf kritische Probleme konzentrieren können.

Disziplin 5: Sich operativ vorbereiten
Eine gut aufgestellte Datensicherung ist eine unverzichtbare Grundlage, um im Ernstfall die Daten schnell und effizient wiederherzustellen. Benutzer können dank KI und ML optimale Recovery Time Objectives und Recovery Point Objectives definieren und erhalten Alarme, wenn vordefinierte Service Level Agreements zur Datenverfügbarkeit eventuell nicht mehr eingehalten werden. Das gilt insbesondere in einer hybriden Cloud, in der es zu unerwarteten Problemen in der Hardware-Supply-Chain kommen kann. KI und ML vereinfachen und verbessern die Beschaffungsprozesse, indem die Technologie maschinelles Lernen einsetzt, um Muster zum Verbrauch aus der Vergangenheit zu analysieren, saisonale Faktoren zu berücksichtigen und den zukünftigen Speicherbedarf vorherzusagen. So haben die IT-Verantwortlichen genügend Zeit, um zu reagieren und Kapazitäten hinzuzufügen.

Eine Technologie der Gegenwart
Eine praxisbezogene Künstliche Intelligenz und maschinelles Lernen helfen schon jetzt, Daten automatisiert zu sichern sowie wiederherzustellen, und tragen zur Cyberresilienz von Datenplattformen bei. Das verbessert auch konkret den Backupbetrieb von der Planung bis hin zur kontinuierlichen Fehlersuche. Erst KI und Machine Learning ermöglichen automatisierte Abläufe mit hinreichender Sicherheit. Diese Technologien sind nicht nur Konzepte für die Zukunft. Sie sind verfügbar und können schon heute operativ eingesetzt werden. (Commvault: ra)

eingetragen: 20.01.24
Newsletterlauf: 04.04.24

CommVault: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Leitfaden für eine erfolgreiche DRaaS-Auswahl

    Investitionen in DRaaS (Disaster-Recovery-as-a-Service) sind sinnvoll und zukunftsweisend, denn DRaaS hilft den Unternehmen, ihre IT-Systeme und Daten im Fall eines Datenverlusts schnell wiederherzustellen. Allerdings sollte man im Vorfeld eine gründliche Marktanalyse durchführen und sich über die Funktionsweise und Kosten der verschiedenen Lösungen informieren.

  • ERP-Software muss ein Teamplayer sein

    So wichtig ERP-Systeme auch sind, bei der Auswahl der richtigen Lösung und Anbieter gibt es für Unternehmen eine Reihe von Aspekten zu beachten - schließlich bringen nur passgenaue und ausgereifte Systeme auch die erwünschten Vorteile. IFS erklärt, worauf es bei der Suche ankommt.

  • Grundlage für zukunftssichere Rechenzentren

    Rechenzentren sind das Rückgrat unserer digitalen Welt. Betreiber dieser Infrastrukturen stehen dabei vor immensen Herausforderungen: Sie müssen nicht nur den ununterbrochenen Betrieb und höchste Sicherheitsstandards sicherstellen, sondern auch strengere Umwelt- und Effizienzkriterien einhalten.

  • Cloud-basierte Tests

    Mit der Digitalisierung steigt das Datenvolumen und der Energieverbrauch. Daher stehen Unternehmen jetzt vor der Herausforderung, ihre IT nachhaltiger zu gestalten. Auch das Qualitätsmanagement kann dazu einen wertvollen Beitrag leisten, indem es den CO2-Fußabdruck von Software verringert.

  • Was ist der richtige Cloud-Speicher für KMU?

    Verschiedene Arten von Unternehmen haben unterschiedliche IT-Anforderungen. So haben kleine und mittelständische Unternehmen natürlich nicht die gleichen Anforderungen wie große internationale Unternehmen.

  • ITAM on-premises versus Software-as-a-Service

    IT Asset Management (ITAM) schafft die Basis für Cybersecurity, Kostenkontrolle und effizientes IT-Management. Doch vor allem im Mittelstand fehlen häufig Manpower und Expertise, eine ITAM-Lösung inhouse zu betreiben. Software-as-a-Service-Angebote versprechen Abhilfe.

  • Steigende Gefahr aus der Cloud?

    Cloud Computing hat sich in den letzten Jahren als zentrales Element der digitalen Transformation etabliert. Unternehmen jeder Größe nutzen Cloud-Dienste, um ihre IT-Infrastruktur flexibler und effizienter zu gestalten.

  • Private AI verfolgt einen Plattform-Ansatz

    Der Einzug der generativen KI (GenAI) in die breite Öffentlichkeit hat das KI-Wachstum in Unternehmen vergangenes Jahr beschleunigt. Motiviert durch Wettbewerbsdruck und potenzielle Vorteile forcieren Unternehmen und Regierungen ihre KI-Strategie.

  • Mangelnde Vorbereitung auf SaaS-Ausfälle

    Der Hycu State of SaaS Resilience 2024 Report deckte zuletzt kritische Datensicherungslücken auf, da 70 Prozent der Unternehmen Datenverluste erleiden. Trotzdem verlassen sich 60 Prozent immer noch auf ihre Software-as-a-Service (SaaS)-Anbieter, um sich zu schützen, und setzen sich damit weiteren Risiken aus.

  • KI gewinnbringend einsetzen

    Das KI-Potenzial ist praktisch unerschöpflich. Doch um es richtig zu nutzen und daraus echte Wettbewerbsvorteile zu generieren, muss vorab die Bereitschaft des Unternehmens dafür geklärt werden. Der IT-Dienstleister CGI erklärt, warum der Readiness-Check so wichtig ist, was er genau analysiert und was mit den daraus gewonnenen Erkenntnissen passiert.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen