Sie sind hier: Startseite » Markt » English News

Lernpipelines orchestrieren und verwalten


Kubeflow Pipelines eine ideale Hybridlösung vom Prototyping bis hin zur Produktion
Mit Kubeflow Pipelines kann KI noch effektiver genutzt werden


Um Künstliche Intelligenz (KI) für Unternehmen einfacher verfügbar zu machen, hat Google Cloud bereits Anfang des Jahres AutoML vorgestellt. Damit werden Unternehmen mit begrenztem Machine-Learning-Wissen beim Aufbau eigener Modelle unterstützt. Heute kommen zwei weitere KI-Werkzeuge dazu, die es Unternehmen leichter machen, KI für sich zu nutzen: Der AI Hub ist eine neue, universelle Plattform für Machine-Learning-Plug-and-Play-Inhalte: ML-Ressourcen, die von Google Cloud entwickelt wurden, sind für alle Unternehmen öffentlich zugänglich. Zusätzlich bietet AI Hub eine sichere, zentrale Plattform, auf der Unternehmen ML-Ressourcen hochladen und innerhalb ihrer eigenen Organisation gemeinsam testen und nutzen können.

Mit Kubeflow Pipelines kann KI noch effektiver genutzt werden. Dies ist die neueste Komponente des Kubeflow-Projekts und ermöglicht es Anwendern, mehrstufige maschinelle Lernpipelines zu orchestrieren und zu verwalten. Somit ist Kubeflow Pipelines eine ideale Hybridlösung vom Prototyping bis hin zur Produktion.

Introducing AI Hub and Kubeflow Pipelines: Making AI simpler, faster, and more useful for businesses

Hussein Mehanna, Engineering Director, Cloud ML Platform

Whether they’re revolutionizing the clothing manufacturing supply chain or accelerating e-commerce, businesses from every industry are increasingly turning to AI to advance what’s possible. Yet for many businesses, the complexities of fully embracing AI can seem daunting.

Our goal is to put AI in reach of all businesses. But doing that means lowering the barriers to entry. That’s why we build all our AI offerings with three ideas in mind: make them simple, so more enterprises can adopt them, make them useful to the widest range of organizations, and make them fast, so businesses can iterate and succeed more quickly.

Earlier this year, we announced AutoML to help businesses with limited ML knowledge and expertise build their own custom ML models. We’ve invested in specialized training and certifications to help grow the ML skill set more broadly. And we provide enterprises resources like the Advanced Solutions Lab that offer on-site collaboration with Google’s own ML engineers. All these things have helped grow AI adoption across enterprises. To date, we have more than 15,000 paying customers across many different industries using our AI services.

Another way we’re aiming to make AI faster, simpler and more useful is by helping data scientists be more effective. Although there are approximately 20 million developers worldwide, there are only 2 million data scientists. They need tools that can help them scale their efforts, and organizations need more ways to take advantage of their work and make it accessible to their developers and engineers. Today we’re announcing several new products to our AI portfolio that do exactly that.

Making AI simpler with the AI Hub
Putting AI in reach of more businesses means making it easier for them to discover, share, and reuse existing tools and work. But until recently, the scarcity of ML knowledge in the workforce made it challenging to build a comprehensive resource. Today we’re launching the AI Hub to address this need.

The AI Hub is a one-stop destination for plug-and-play ML content, including pipelines, Jupyter notebooks, TensorFlow modules, and more. It offers two significant benefits. The first is making high quality ML resources developed by Google Cloud AI, Google Research and other teams across Google publicly available to all businesses. The second is that it provides a private, secure hub where enterprises can upload and share ML resources within their own organizations. This makes it easy for businesses to reuse pipelines and deploy them to production in GCP—or on hybrid infrastructures using the Kubeflow Pipeline system—in just a few steps.

In alpha, the AI Hub will provide these Google-developed resources and private sharing controls, and its beta release will expand to include more asset types and a broader array of public content, including partner solutions.

Making AI more useful with Kubeflow Pipelines and API updates for video
It’s not enough to provide a place where organizations can discover, share and reuse ML resources, they also need a way to build and package them so that they’re as useful as possible to the broadest range of internal users. That’s why we’re introducing Kubeflow Pipelines.

Kubeflow Pipelines are a new component of Kubeflow, a popular open source project started by Google, that packages ML code just like building an app so that it’s reusable to other users across an organization. Kubeflow Pipelines provides a workbench to compose, deploy and manage reusable end-to-end machine learning workflows, making it a no lock-in hybrid solution from prototyping to production. It also enables rapid and reliable experimentation, so users can try many ML techniques to identify what works best for their application.

Fairness is one of our guiding AI principles and something we discuss with our cloud customers adopting ML in their own businesses. Kubeflow Pipelines can help them take advantage of Google’s TensorFlow Extended (TFX) open source libraries that address production ML issues such as model analysis, data validation, training-serving skew, data drift, and more. This improves the accuracy, relevance, and fairness of results for businesses. You can get started with Kubeflow Pipelines on GitHub.

We also continue to expand the capabilities of our AI building blocks to make them even more useful for enterprises, including the beta release of three features in our Cloud Video API that address common challenges for businesses that work extensively with video. Text Detection can now determine where and when text appears in a video, making that video more readily searchable, and it supports more than 50 languages. Object Tracking can both identify more than 500 classes of objects in a video. Speech Transcription for Video can transcribe audio, making it possible to easily create captioning and subtitles, as well as increasing the searchability of its contents. You can learn more about our AI building blocks on our website.

Making AI faster with Cloud TPU updates
We’re continually lowering the compute barriers to AI with our Tensor Processing Units (TPUs). These custom ASIC chips designed by Google for machine learning workloads dramatically accelerate ML tasks, and are easily accessed through the cloud.

In July we announced that our second-generation TPUs are generally available and within reach of every Cloud user, including free-tier users. In October, we announced the beta release of our third generation, liquid-cooled Cloud TPUs, and we made PyTorch available across Google Cloud, and will soon be available for use on TPUs. Today we also announced pricing for our V2 TPU Pods. All these updates aim to make compute-intensive machine learning faster and more accessible to businesses worldwide. You can learn more about TPUs on our website.

Looking forward
Over the past several months we’ve heard from many of our customers successfully using AI to solve their unique business challenges.

Meredith Corporation, a media company, uses machine learning to automate content classification, applying a custom universal taxonomy with Cloud AutoML and Natural Language. Machine learning helps them make content classification more repeatable and scalable, saving time and improving reader experiences.

"At Meredith Corporation, we’re focused on creating compelling content across platforms and life stages for brands such as PEOPLE, Better Homes & Gardens, Martha Stewart Living, Allrecipes, and Food & Wine,” says Alysia Borsa, Chief Marketing & Data Officer, Meredith Corporation. "By using Natural Language and AutoML services to apply our custom universal taxonomy to our content, we’re able to better identify and respond to emerging trends, enable robust detailed targeting and provide our audience with more relevant and engaging experiences.”

Emory University is combining clinical data, machine learning, and the scalable infrastructure of GCP to develop a sepsis prediction engine that uses real-time analytics in an effort to provide better care for at-risk patients while also controlling medical costs.

"With sepsis, early detection is key,” says Dr. Ashish Sharma, Assistant Professor, Department Department of Biomedical Informatics, Emory University’s School of Medicine. "By converting our TensorFlow-based sepsis prediction algorithm into an App and running it on the Google App Engine, we're able to provide information in the actionable window when physicians can make meaningful interventions for a patient. What matters most is improving medical outcomes for real patients in ICUs and machine learning is crucial to helping optimize patient care.”

Geotab uses BigQuery ML and BigQuery GIS to predict potential hazardous driving areas in Chicago and promote data driven decision making and enable smart city initiatives.

"Geotab provides data-driven insights on commercial fleet vehicles across every continent,” says Mike Branch, Vice President Data & Analytics, Geotab. "By leveraging machine learning and BigQuery, among other smart city insights, we have been able to develop a solution for our customers that predicts particularly hazardous driving areas in a city based on weather and traffic flow. We’re incredibly excited to be collaborating with Google Cloud’s machine learning technology to help create better solutions for our customers and the community.”

We’re also thrilled to see the continued growth of the Kubeflow community. Organizations like Cisco and NVIDIA are among the key contributors to this open source project and are collaborating with us closely to adopt Kubeflow pipelines. NVIDIA is already underway integrating RAPIDS, a new suite of open source data science libraries, into Kubeflow. The RAPIDS library leverages GPUs to provide an order of magnitude speed-up for data pre-processing and machine learning, thus perfectly complementing Kubeflow.

"Machine learning is fast emerging as an indispensable part of the digital transformation our customers are undertaking. Further, ML is increasingly gaining traction with enterprise IT and mainstream engineering teams as they seek to deploy architectures that serve data scientists in their lines of business. Realizing the potential of ML in enterprise environments requires dramatic simplification of the lifecycle of the entire solution,” said Kaustubh Das, vice president, data center product management at Cisco. "Cisco’s significant contributions to Kubeflow aims to simplify hybrid/multi cloud AI/ML life cycle management. Cisco is also delighted to see the emergence of Kubeflow Pipeline that promises a radical simplification of ML workflows which are critical for mainstream adoption. We look forward to bringing the benefits of this technology alongside our world class AI/ML product portfolio to our customers." (Google: ra)

eingetragen: 17.11.18
Newsletterlauf: 12.12.18

Google Enterprise: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Unternehmen

  • Festpreis-Strategie und Service Excellence

    Ein Jahr nach Aufnahme des operativen Geschäfts weitet die Tecman Deutschland GmbH, zertifizierter Microsoft-Technologiepartner, ihre Geschäftstätigkeiten aus und schließt eine strategische Partnerschaft mit der acadon AG, Krefeld. Im Microsoft-Partnernetzwerk positioniert sich Tecman Deutschland mit klarem Fokus und Differenzierungsmerkmal: ERP-Cloud-Projekte auf Basis von Microsoft Dynamics 365 Business Central werden zum Festpreis umgesetzt - inklusive bedarfsgerechter, zuverlässiger Servicepakete.

  • Digitale Souveränität der Sparkassen

    Die Finanz Informatik (FI), der Digitalisierungspartner der Sparkassen-Finanzgruppe, hat im Geschäftsjahr 2024 erfolgreich Zukunftsthemen rund um das digitale Banking der Sparkassen eingeführt. Im Mittelpunkt standen innovative, nutzerfreundliche digitale Banking-Lösungen für die rund 50 Millionen Kundinnen und Kunden der Sparkassen sowie Lösungen, die die Institute durch Standardisierung und Effizienzsteigerungen entlasten. Der Jahresbericht 2024 mit dem Motto "Zukunft. Digital. Machen" zeigt, wie stark sich die FI entwickelt hat, welche Projekte sie für ihre Kunden umgesetzt hat und welchen Beitrag sie zur digitalen Souveränität der Sparkassen leistet.

  • Integration im gesamten Azure-Ökosystem

    Das Daten- und KI-Unternehmen Databricks und Microsoft haben eine mehrjährige vorzeitige Verlängerung ihrer strategischen Partnerschaft bekannt gegeben. Damit bekräftigen sie ihr gemeinsames Ziel, Unternehmen dabei zu unterstützen, das volle Potential von Daten und künstlicher Intelligenz auszuschöpfen. Azure Databricks, seit 2018 ein Microsoft-Dienst, ist eine bewährte Plattform, die Tausenden von gemeinsamen Kunden modernste Daten- und KI-Funktionen auf einer sicheren und vertrauenswürdigen Plattform bereitstellt.

  • Daten- und KI-Souveränität hoch im Kurs

    Cyber Security, Cloud-Transformation und Künstliche Intelligenz wachsen im deutschen IT-Services-Markt weiterhin am stärksten. Das ist eines der Ergebnisse der aktuellen Lünendonk-Studie "Der Markt für IT-Dienstleistungen in Deutschland 2025". Bei der q.beyond AG gehören diese Geschäftsfelder zu den Kernkompetenzen. Der Studie zufolge zählt das Unternehmen auch in diesem Jahr zu den führenden IT-Service-Unternehmen in Deutschland.

  • Zusammen an der europäischen Cloud arbeiten

    In einer Zeit, in der die digitale Souveränität Europas zunehmend unter geopolitischem und wirtschaftlichem Druck steht, startet die Initiative Sovereign European Cloud API (SECA API) die nächste entscheidungsrelevante Phase. Die Gründungsmitglieder Aruba, IONOS und Dynamo haben einen "Call for Comments" mit klarer Botschaft veröffentlicht: Es ist jetzt an der Zeit, einen wirklich offenen, interoperablen Cloud-Standard für Europa zu schaffen. Interessierte können sich bis Mitte September an der Weiterentwicklung von SECA beteiligen.

  • Cloud-Lösungen im Dokumentenmanagement

    DocuWare, Anbieterin von Lösungen für Dokumentenmanagement und Workflow-Automatisierung, blickt auf ein erfolgreiches Geschäftsjahr 2024 zurück. Sowohl Umsatz als auch die Anzahl der Kunden weltweit sind erneut gestiegen. Im Geschäftsjahr 2024 ist DocuWare weitergewachsen. Die Cloud-Umsätze stiegen im Vergleich zum Vorjahr um 25 Prozent, der weltweite Gesamtumsatz um 16 Prozent. Auch die Kundenzahlen entwickelten sich positiv: über 3.000 neue Kunden entschieden sich für DocuWare, davon rund 2.800 für die "DocuWare Cloud". Das unterstreicht den anhaltenden Trend zu flexiblen und skalierbaren Cloud-Lösungen im Dokumentenmanagement. Insgesamt vertrauen mittlerweile mehr als 20.000 Kunden weltweit auf DocuWare.

  • Risikominimierung in der Cloud

    Tenable gibt bekannt, dass es im ersten IDC MarketScape: Worldwide Cloud-Native Application Protection Platform (CNAPP) 2025 Vendor Assessment (Dokument-Nr. US53549925, Juni 2025) als "Major Player" eingestuft wurde. Die Einstufung von Tenable als "Major Player" im IDC MarketScape basiert auf einer umfassenden Analyse der Unternehmensstrategie und technologischen Leistungsfähigkeit. In die Bewertung flossen unter anderem strukturierte Gespräche, Interviews mit Marktteilnehmern sowie direktes Feedback von Endanwendern ein.

  • Best-Practice-Methoden für AWS-Sicherheit

    BeyondTrust hat eine mehrjährige strategische Kooperationsvereinbarung (Strategic Collaboration Agreement, SCA) mit Amazon Web Services (AWS) abgeschlossen. Ziel der Zusammenarbeit ist es, die strategische Partnerschaft zwischen beiden Unternehmen zu vertiefen, gemeinsame Innovationen voranzutreiben, die Marktreichweite zu erweitern und ein nachhaltiges Wachstum zu fördern.

  • Cybersecurity und Compliance

    Claroty hat mit dem C5 (Cloud Computing Compliance Criteria Catalogue)-Testat eine der höchsten Auszeichnungen für Cloud-Sicherheitsstandards in Deutschland erhalten. Der Spezialist für die Sicherheit cyber-physischer Systeme (CPS) hat dabei die strengen, vom Bundesamt für Sicherheit in der Informationstechnik (BSI) definierten Anforderungen erfüllt und unterstreicht damit seine Zielsetzung, Cybersecurity und Compliance durch eine sichere und regelkonforme Cloud bereitzustellen.

  • Bechtle erhält C5-Testat gemäß BSI-Kriterien

    Bechtle hat erfolgreich das C5:2020-Testat gemäß den Kriterien des Bundesamts für Sicherheit in der Informationstechnik (BSI) erhalten. Die unabhängige Prüfung bestätigt, dass Bechtle die strengen Anforderungen des C5-Kriterienkatalogs (Cloud Computing Compliance Criteria Catalogue) erfüllt und damit höchsten Ansprüchen an Informationssicherheit beim Betrieb von Cloud-Services entspricht. Dazu zählen insbesondere auch Maßnahmen zum Schutz vor Cyberangriffen und zur Sicherstellung der Datenintegrität.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen