Sie sind hier: Startseite » Markt » Tipps und Hinweise

Zukunftsinvestition: DataOps-Plattform


Viele Datenteams in Unternehmen haben immer noch Schwierigkeiten, eine neue IT-Umgebung noch am selben Tag bereitzustellen
In den letzten Jahren hat sich das Datenmanagement als das letzte grundlegende Element für Störungen im Entwicklungsprozess herausgestellt, die sich mit DevOps nicht lösen lassen


Langsam, aber sicher ist DataOps kein Fremdwort mehr. Immer mehr Tools und Lösungen werben mit dem Begriff für sich. Wie sollen Unternehmen da noch den Überblick behalten? Hier sind drei Fragen, die sich Verantwortliche stellen müssen, wenn sie die richtige DataOps-Technologie für ihre Datenteams einsetzen möchten. DevOps ist heute unerlässlich für alle Unternehmen, die flexibel sein und möglichst schnell qualitativ hochwertige Produkte und Dienstleistungen anbieten wollen.

Wer auf DevOps verzichtet, kann sich kaum über einen längeren Zeitraum gegenüber der Konkurrenz behaupten. Denn der Ansatz spielt eine entscheidende Rolle bei der Automatisierung der IT-Infrastruktur und des Softwareentwicklungszyklus. Dennoch hat DevOps bisher ein entscheidendes Element gefehlt, das für viele Innovationen zentral ist: die Datenbereitstellung. Genau hier setzt DataOps an.

Zeitfresser Datenbereitstellung
Viele Datenteams in Unternehmen haben immer noch Schwierigkeiten, eine neue IT-Umgebung noch am selben Tag bereitzustellen. In einer aktuellen Studie des Beratungsunternehmens 451 Research gaben 47 Prozent der befragten globalen Unternehmen sogar an, dass es bei ihnen vier bis fünf Tage dauert, eine neue Datenumgebung einzurichten. Unabhängig davon, wie schnell IT-Infrastruktur und Software-Development-Life-Circle (SDLC)-Tooling sind – diese Verzögerung bleibt nicht ohne Folgen. Denn eine zähe Datenbereitstellung kann Entwicklungsprozesse stark ausbremsen.

Dabei stehen die Zeichen so günstig wie nie zuvor: Unternehmen haben immer mehr Möglichkeiten, ihre Infrastruktur zu automatisieren. Entwicklerteams können heutzutage Rechen-, Speicher- und Netzwerkumgebungen in Minutenschnelle mit Anbietern und Tools wie Ansible, Chef und Puppet auf- und abbauen. Viele Unternehmen haben zudem bereits in agile Entwicklung und DevOps investiert. Einige unter ihnen haben sogar eine Testautomatisierung aufgebaut, um ihre Entwicklungspipelines zu automatisieren und Releases mit Tools wie Git, Jenkins, Maven und Docker schneller auf den Markt zu bringen. Wenn es allerdings an einer effizienten Datenbereitstellung fehlt, waren alle diese Bemühungen umsonst.

DataOps ist der Schlüssel zum DevOps-Schloss
In den letzten Jahren hat sich das Datenmanagement als das letzte grundlegende Element für Störungen im Entwicklungsprozess herausgestellt, die sich mit DevOps nicht lösen lassen. Hier setzt DataOps an: Dabei handelt es sich um einen kollaborativen Datenmanagement-Ansatz. Dieser trägt dazu bei, die Effizienz sowie Art und Weise, wie Daten im gesamten Unternehmen verwendet werden, zu verbessern. Der Schlüssel dazu liegt in einer möglichst umfassenden Abstimmung aller beteiligten Personen, Prozesse und Technologien.

Datenmanagement-Lösungen gehören daher zum Kern jedes DataOps-Ansatzes. Doch mittlerweile gibt es verschiedenste Lösungen und Plattformen, die den Titel DataOps für sich beanspruchen. Folgende drei Fragen helfen den Verantwortlichen, im Angebotsdschungel die richtige DataOps-Plattform zu finden:

1. Kann die DataOps-Plattform allen Beteiligten Daten automatisiert bereitstellen?
Da Anwendungen mehrere Datenquellen nutzen, sollte der SDLC-Workflow auch das gleiche Szenario in AppDev-, Quality Assurance-, Staging- und Produktionsumgebungen abbilden. Eine DataOps-Lösung muss dafür in der Lage sein, Daten aus allen Produktionsdatenquellen konsistent an verschiedene beteiligte Gruppen und Teams zu liefern. Darüber hinaus sollte die Plattform Abstraktionen bereitstellen, die unabhängig von der Datenquelle oder dem Betriebskontext (On-Premises oder Public Cloud) gleich funktionieren und jedem Benutzer wiederholbare, integrierte und einheitliche Workflows aus mehreren Datenquellen zur Verfügung stellen.

2. Kann die Plattform die Datenerkennung und -maskierung sensibler Informationen im gesamten Unternehmen automatisieren?
Eine leistungsfähige DataOps-Lösung sollte weiterhin in der Lage sein, Daten aus jeder Datenquelle zu analysieren, kategorisieren und gegebenenfalls zu maskieren. Nur so ist sichergestellt, dass sensible Daten nicht in Umgebungen mit geringeren Sicherheitsstandards gelangen. Die erzeugten Datenkopien sollten realistisch, aber fiktiv sein. So sind Tests durchführbar, für Diebe und Hacker aber gleichzeitig wertlos. Es empfiehlt sich zudem, dass die maskierten Datenwerte auch für nicht-produktive Anwendungsfälle verwendbar sind.

3. Kann die Plattform den Endnutzern personenbezogene Datenumgebungen zur Verfügung stellen und sie diese bearbeiten lassen?
Die richtige Plattform zeichnet sich dadurch aus, dass sie personenbezogene Datenumgebungen ohne Speicheraufwand schnell mit erweiterten Datenbearbeitungstools wie Lesezeichen, Zurückspulen, Zurücksetzen und Verzweigen ausstattet. Einzelne Benutzer, einschließlich Quality Assurance Engineers, Tester und Entwickler, sollten effizient und einfach zusammenarbeiten können, indem sie ein Lesezeichen gemeinsam nutzen und eine Lesezeichen-Bibliothek für mehrere Workflows erstellen.

Fazit
Automatisierungsprozesse werden in Zukunft im IT-Bereich immer umfassender sein. Unternehmen dürfen dabei auf drei Ebenen keinesfalls den Anschluss verpassen: bei der IT-Infrastruktur, Softwareentwicklung und im Datenmanagement. Nur dann sind sie in der Lage, Störungen zu beheben und schneller als ihre Konkurrenten zu innovieren. Wenn den Verantwortlichen dies allerdings gelingt und sie die richtigen DataOps-Technologien in ihre DevOps-Prozesse integrieren, steht einem möglichst effizienten und agilen Entwicklungsprozess nichts mehr im Weg.
(Delphix: ra)

eingetragen: 11.08.19
Newsletterlauf: 11.09.19

Delphix: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • XLAs: Der Mensch als Maßstab

    Über Jahrzehnte galten Service Level Agreements (SLAs) als Maßstab für gutes IT- und Servicemanagement: Wurde ein Ticket fristgerecht gelöst, war die Aufgabe erledigt. Doch in einer zunehmend digitalisierten Arbeitswelt zeigt sich: Diese Logik greift zu kurz. Effizienz allein entscheidet nicht mehr, ob Mitarbeitende zufrieden und produktiv bleiben. Gefragt ist ein neues Verständnis, das die tatsächliche Erfahrung der Menschen in den Mittelpunkt rückt.

  • Cloud-Souveränität immer stärker im Mittelpunkt

    Mit dem rasanten Fortschritt der digitalen Wirtschaft und dem Aufkommen zahlreicher neuer Technologien - allen voran Künstlicher Intelligenz (KI) - stehen europäische Entscheidungsträger vor einer neuen Herausforderung: Wie lässt sich ein innovatives Ökosystem regionaler Cloud-Anbieter schaffen, das sowohl leistungsfähige Lösungen als auch ausreichende Skalierbarkeit bietet? Und wie kann dieses Ökosystem mit internationalen Anbietern konkurrieren und zugleich die Abhängigkeit von ihnen verringern? Politik, Regulierungsbehörden, Forschungseinrichtungen und Industrievertreter in Europa konzentrieren sich darauf, wie der Kontinent seine Position im globalen Wettlauf um Cloud-Innovationen verbessern kann - ohne dabei die Kontrolle, Autonomie und Vertraulichkeit über europäische Daten aufzugeben, die andernfalls womöglich in anderen Märkten gespeichert, verarbeitet oder abgerufen würden.

  • Vom Nearshoring zum Smart Sourcing

    Aufgrund des enormen IT-Fachkräftemangels und der wachsenden Anforderungen von KI und digitaler Transformationen benötigen Unternehmen heute flexible und kosteneffiziente Lösungen, um wettbewerbsfähig zu bleiben. Für die Umsetzung anspruchsvoller Innovationsprojekte mit hohen Qualitätsstandards entscheiden sich deshalb viele Unternehmen für Nearshoring, da dieses Modell ihnen Zugang zu hochausgebildeten IT-Fachkräften in räumlicher und kultureller Nähe ermöglicht.

  • Sechs stille Killer des Cloud-Backups

    Cloud-Backups erfreuen sich zunehmender Beliebtheit, da sie auf den ersten Blick eine äußerst einfache und praktische Maßnahme zu Schutz von Daten und Anwendungen sind. Andy Fernandez, Director of Product Management bei Hycu, nennt in der Folge sechs "stille Killer", welche die Performance von Cloud-Backups still und leise untergraben. Diese werden außerhalb der IT-Teams, die täglich damit zu tun haben, nicht immer erkannt, können aber verheerende Folgen haben, wenn sie ignoriert werden.

  • Datenaufbewahrungsstrategie und SaaS

    Die Einhaltung von Richtlinien zur Datenaufbewahrung sind für Unternehmen unerlässlich, denn sie sorgen dafür, dass wertvolle Informationen sicher gespeichert und Branchenvorschriften - egal wie komplex sie sind - eingehalten werden. Diese Governance-Frameworks legen fest, wie Unternehmen sensible Daten verwalten - von deren Erstellung und aktiven Nutzung bis hin zur Archivierung oder Vernichtung. Heute verlassen sich viele Unternehmen auf SaaS-Anwendungen wie Microsoft 365, Salesforce und Google Workspace. Die Verlagerung von Prozessen und Daten in die Cloud hat jedoch eine gefährliche Lücke in die Zuverlässigkeit der Datenaufbewahrung gerissen, denn die standardmäßigen Aufbewahrungsfunktionen der Drittanbieter entsprechen häufig nicht den Compliance-Anforderungen oder Datenschutzzielen.

  • Lücken der SaaS-Plattformen schließen

    Die zunehmende Nutzung von Software-as-a-Service (SaaS)-Anwendungen wie Microsoft 365, Salesforce oder Google Workspace verändert die Anforderungen an das Datenmanagement in Unternehmen grundlegend. Während Cloud-Dienste zentrale Geschäftsprozesse unterstützen, sind standardmäßig bereitgestellte Datenaufbewahrungsfunktionen oft eingeschränkt und können die Einhaltung der Compliance gefährden. Arcserve hat jetzt zusammengefasst, worauf es bei der Sicherung der Daten führender SaaS-Anbieter ankommt.

  • Nicht mehr unterstützte Software managen

    Von Windows bis hin zu industriellen Produktionssystemen: Wie veraltete Software Unternehmen angreifbar macht und welche Strategien jetzt nötig sind Veraltete Software ist weit verbreitet - oft auch dort, wo man es nicht sofort vermuten würde. Beispiele für besonders langlebige Anwendungen sind das SABRE-Flugbuchungssystem oder die IRS-Systeme "Individual Master File" und "Business Master File" für Steuerdaten, die seit den frühen 1960er-Jahren im Einsatz sind. Während solche Anwendungen ihren Zweck bis heute erfüllen, existiert daneben eine Vielzahl alter Software, die längst zum Sicherheitsrisiko geworden ist.

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen