Sie sind hier: Startseite » Fachartikel » Grundlagen

Wächter des Cloud-Datenschatzes


Wie agil müssen wirksame Sicherheitsmechanismen für die Cloud künftig sein?
Machine Learning: eine logische Antwort auf die gestiegenen Datenmengen im Zuge der Digitalisierung


Von Anurag Kahol, CTO, Bitglass

Im Zuge der Digitalisierung wächst die Datenmenge, die Unternehmen täglich verarbeiten, stetig an. Dies spiegelt sich auch in der gestiegenen Nutzung von Cloud Computing-Anwendungen in den vergangenen Jahren wider. Unternehmensdaten sind rund um die Uhr überall zugänglich, ermöglichen effiziente Arbeitsabläufe und – zumindest auf den ersten Blick – etwas weniger Verwaltungsaufwand für die IT-Abteilung. Dieser Effekt relativiert sich jedoch, wenn man die Cloud Computing-Nutzung unter dem Aspekt der Sicherheit betrachtet. Die damit einhergehenden Risiken und neuen Bedrohungen erfordern fortschrittliche Sicherheitstechnologien, um den Schutz von Unternehmensdaten gewährleisten zu können.

Angriffsziel Cloud Computing-Daten: Bedrohung durch Malware
Als Währung des digitalen Zeitalters hat sich die wachsende Datenmenge in der Cloud längst zu einem überaus attraktiven Ziel für Hacker entwickelt. Ein häufig genutzter Angriffsvektor ist derzeit das Einschleusen von Malware in Cloud-Anwendungen mittels Social Engineering, beispielsweise durch Spear Phishing-Attacken. Die Sicherung von Daten in Cloudanwendungen wird noch weitgehend den Nutzern überlassen. Zwar bieten manche Public-Cloud Provider gewisse Basis-Schutzfunktionen, um Bedrohungen in der Cloud zu erkennen.

Wie jedoch die Ergebnisse eines Experiments von Bitglass vor kurzem zeigten, ist deren Wirksamkeit begrenzt: Im Rahmen ihrer aktuellen Sicherheitsstudie testete das Bitglass Threat Research-Team den integrierten Malware-Schutz der im Unternehmensumfeld beliebten Cloud-Anwendungen Google Drive und Microsoft Office 365.

In Zusammenarbeit mit Cylance nutzte es dafür eine bisher unbekannte Form von Ransomware mit dem Namen Shurl0ckr, eine Variante der Goijdue-Schadsoftware. Dabei handelt es sich um Ransomware-as-a-Service, die gegen eine Provision im Darknet bereitgestellt wird, um somit eine hohe (Schadens-) Reichweite zu erzielen und den Urhebern einträgliche Gewinne zu bescheren. Obwohl dem Malware-Schutz von Google und Microsoft die verwandte Gojdue-Ransomware bereits bekannt war, erkannten beide Anwendungen Shurl0ckr nicht als Malware. Bei einer unbekannten Bedrohung hat der Schutzmechanismus also versagt.

Viele Malware-Schutz-Mechanismen agieren nach wie vor reaktiv und ermitteln auf Grundlage der in einer Datenbank hinterlegten Eigenschaften von Dateien, ob es sich um Malware handelt. Das Ganze muss man sich in etwa wie ein Puzzlespiel vorstellen: Der Malware-Schutz prüft, ob die neue Malware in ein bestehendes Puzzlespiel passt. In dem vorliegenden Fall handelte es sich sozusagen um ein Puzzleteil, an dem eine Kante oder Ecke geringfügig verändert wurde. Da es nicht vollständig in die bestehende "Malware-Schablone" passte, wurde es als sicher eingestuft, obwohl es die Mehrzahl der notwendigen Eigenschaften erfüllt hätte. Angesichts der fortschreitenden Professionalisierung von Cyberkriminellen und den immer ausgereifteren Angriffen greift ein derartiger Sicherheitsansatz langfristig zu kurz.

Agiler Schutz von Cloud Computing-Daten mit Machine Learning
Viele Wege führen in die Cloud – und entsprechend gibt es zahlreiche Möglichkeiten für das Einschleusen und die Verbreitung von Malware. Die Vielzahl an Nutzern und Zugriffsmöglichkeiten, sowie immer raffiniertere Sicherheitsbedrohungen verlangen einen dynamischen Sicherheitsansatz, der eine weit reichende Risikoeinschätzung vornehmen und geeignete Richtlinien automatisch anwenden kann. Um Unternehmensdaten auf ihrem Weg in und aus der Cloud wirksam schützen zu können, ist Machine Learning gegenwärtig der wirksamste Ansatz.

Machine Learning Algorithmen finden bereits in Spracherkennungssoftware oder in ERP-Systemen zur Verwaltung von Daten Verwendung. Nun hält die Technologie auch Einzug in Cloud-Sicherheitslösungen, wie beispielsweise Cloud Access Security Broker. Anstelle wie herkömmliche signaturbasierte Lösungen lediglich auf Grundlage bestimmter Datenprofile eine Risikoeinschätzung vorzunehmen, nutzt maschinelles Lernen eine weitreichende Eigenschafts- und Verhaltensanalyse und trifft eine Entscheidung, die automatisiert die implementierten Richtlinien durchsetzt.

Wenn eine Datei als wahrscheinliche Bedrohung eingestuft wird, kann sie blockiert werden, falls Benutzer versuchen, sie in die Cloud hochzuladen oder auf ein Gerät herunterzuladen. Auf diese Art bildet Machine Learning einen ganzheitlichen Sicherheitsansatz für Unternehmensdaten über alle Cloud-Anwendungen eines Unternehmens hinweg und bietet erweiterte Kontrollfähigkeiten für Bedrohungen.

Wenn ein Benutzer beispielsweise eine mit Malware infizierte Datei von einer Website herunterlädt, die Datei in der Cloud speichert und somit eine potenzielle Schwachstelle im Unternehmen schafft, wird diese automatisch erkannt und markiert. Lösungen mit maschinellem Lernen überwachen ununterbrochen alle Dateien und Anwendungen in der Cloud. Dabei überprüfen sie jeden Up- und Download von Dateien automatisch auf Malware. Nachdem das Malware-Risiko durch den Machine Learning-Schutz gemeldet und vom Sicherheitsteam beseitigt wurde, gewährt die Lösung den Benutzern automatisch vollen Schreibzugriff. Auf diese Weise sorgt die Lösung für Sicherheit, gewährleistet aber gleichsam eine hohe Benutzerfreundlichkeit, da keine Unterbrechung der Arbeitsabläufe erforderlich ist.

Datenhungrige Cloud-Wächter
Für Cloud-Anwendungen sind Machine Learning-Algorithmen ideal, da große Datenmengen die wichtigste Voraussetzung für deren Zuverlässigkeit sind: Die meisten Algorithmen operieren nicht dateneffizient, das heißt, wenn nur eine geringe Datenmenge zur Verfügung steht, fehlt es ihnen am nötigen Erfahrungsschatz, um in einem konkreten Fall die richtige Entscheidung zu treffen und die geeignete Richtlinie anzuwenden. Menschen genügt das einmalige Betrachten eines Gegenstands – beispielsweise eines Laptops – um diesen künftig auch in einer abgewandelten Erscheinungsform als solchen erkennen zu können.

Maschinen hingegen benötigen einen umfangreichen Erfahrungsschatz, also die Auseinandersetzung mit vielen Laptops, um diese Erscheinungsform zuverlässig identifizieren zu können. So sind maschinelle Lernlösungen, die wenig Daten empfangen, nicht so "intelligent" wie Lösungen, die ein hohes Datenvolumen aus stark frequentierten Umgebungen aufnehmen. Je mehr Dateien analysiert werden und je mehr Malware erkannt wird, desto höher ist die Genauigkeit.

Somit markiert die Nutzung von maschinellem Lernen die logische Reaktion auf die wachsende Menge an Daten und die veränderte Sicherheitslage durch die Cloud-Nutzung. Gleichsam kennzeichnet die Automatisierung von Sicherheitsmechanismen die nächste Stufe im Prozess der Digitalisierung. (Bitglass: ra)

eingetragen: 12.04.18
Newsletterlauf: 17.05.18

Bitglass: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Grundlagen

  • EU-DORA-Compliance sicherstellen

    Die neue EU-DORA-Verordnung soll die digitale operative Widerstandsfähigkeit des Finanzsektors stärken. Dazu gehören überarbeitete Vorschriften und Richtlinien in Bezug auf Cyberrisiko-Management, Datensicherheit, Governance, Ausfallsicherheit und Multi-Cloud-Flexibilität. Eine einheitliche, sichere und hybride Datenplattform ist dabei essentiell, um den neuen Anforderungen in Zeiten von Drittanbieter-Cloud-Infrastrukturen gerecht zu werden.

  • KI-gestütztes Datenmanagement

    Durch die Fortschritte im Bereich Künstlicher Intelligenz (KI) überdenken viele Unternehmen ihre Geschäftsmodelle. Beispielsweise möchten sie Echtzeit-Daten nutzen, um prädiktive Erkenntnisse zu gewinnen und die Entscheidungsfindung zu unterstützen. Als Grundlage benötigen Unternehmen jedoch eine moderne Strategie zum Management und Schutz ihrer Daten, welche die Komplexität ihrer IT-Umgebungen adressiert und für effiziente Abläufe sorgt.

  • Unveränderlicher Speicher für permanenten Schutz

    Fast alle Unternehmen sind heute stark von Daten abhängig; Daten fördern die Entscheidungsfindung, verbessern die Effizienz und helfen Unternehmen, ihren Mitbewerbern einen Schritt voraus zu sein. Dabei müssen Organisationen jedoch sorgfältig mit der riesigen Menge der gesammelten und gespeicherten Daten umgehen.

  • Keine Angst vor der Cloud

    Immer mehr IT-Dienstleister bieten ihre Lösungen und Tools im Cloud-Betrieb an. Gerade im Bereich Software-as-a-Service (SaaS) ist der Trend zu Cloud-Lösungen ungebrochen. Dennoch zögern viele Unternehmen bei der Nutzung der Cloud. Sie sorgen sich um die Sicherheit ihrer Daten und setzen weiterhin auf den Betrieb im eigenen Rechenzentrum.

  • Herausforderung: Cloud Bursting

    Als Technik zur Anwendungsbereitstellung ermöglicht Cloud Bursting die Vereinigung des Besten aus beiden Welten. Auf der einen Seite ermöglicht es den Betrieb einer Anwendung in einem privaten Rechenzentrum, mit bekannten, festen Investitionskosten, vollständiger Kontrolle über die Umgebungen und organisatorischem Fachwissen für deren Betrieb. Auf der anderen Seite wird sie in einer öffentlichen Cloud genutzt, die auf Abruf verfügbar ist und über nahezu unbegrenzte Ressourcen verfügt.

  • SASE-Transformation in drei Schritten

    Der KPMG Global Tech Report 2022 bestätigt, was viele IT-Experten bereits in ihrer täglichen Praxis beobachten: Der Einsatz von Cloud-Anwendungen ist nicht länger das Kennzeichen von digitalen Vorreitern und Marktführern, sondern schlicht die logische Weiterentwicklung digitaler Technologien.

  • Datensicherheit in Microsoft 365

    Während Microsoft 365 Unternehmen eine hervorragende Skalierbarkeit und Redundanz bietet, um Störungen durch Naturereignisse und mechanische Ausfälle Störungen zu vermeiden, ist das Hosten von Daten in der Cloud mit gewissen Risiken verbunden. Anwenderverursachte absichtliche oder versehentliche Datenverluste sind nach wie vor ein Problem für Unternehmen.

  • Die Krux mit dem Outsourcing

    Rund 850.000 Stellen sind laut Statista in Deutschland unbesetzt. Der akute Personalmangel, aber auch ein zu schnelles Wachstum oder Kosteneinsparungen sind Gründe, warum Unternehmen einzelne Bereiche outsourcen. Den Kundenservice externen Experten zu überlassen, hilft dabei, sich auf die eigenen Kernkompetenzen zu konzentrieren oder das gewünschte Service-Level zu erreichen. Vor allem wenn die Kundenanzahl steigt, aber die nötigen Mitarbeiter nicht schnell genug eingestellt werden können.

  • Es muss nicht immer Cloud sein

    Seit Jahren dreht sich in der IT alles um "die Cloud". Wobei es die eine Cloud eigentlich gar nicht gibt. Von Private über Hybrid und Multi bis zur Public Cloud ist heute so gut wie jede Infrastruktur Cloud-fähig - inklusive physischer Server. Analog nutzen die meisten Unternehmen heute in der Praxis eine Kombination aus zahlreichen verschiedenen Infrastrukturen, die alle ihre eigenen Vor- und Nachteile haben.

  • Fehlkonfiguration von Cloud-Ressourcen

    Kaum hat sich CASB als Abkürzung für Cloud Access Security Broker im Markt durchgesetzt, klopft schon die nächste Sicherheitslösung an: Cloud Security Posture Management oder kurz CSPM. Der von Gartner-Analysten geprägte Name steht für einen neuen Sicherheitsansatz, um der hohen Dynamik von Cloud-Infrastrukturen und ihrer immer komplexeren, zeitaufwändigeren Administration gerecht zu werden.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen