Sie sind hier: Startseite » Markt » Tipps und Hinweise

Fünf häufige Mythen über Datenvirtualisierung


Plattformen für Datenvirtualisierung bieten zahlreiche Kontroll- und Governance-Funktionen
Lösungen für Datenvirtualisierung schreiben Anfragen so um, dass die Verarbeitung dorthin verlagert wird, wo sich die Daten befinden


Von Otto Neuer, Regional Vice President und General Manager bei Denodo

Unternehmen verfügen über immer größere Mengen an Daten und es werden täglich mehr. Herkömmliche Datenarchitekturen kommen daher an ihre Grenzen. Die Lösung: Datenvirtualisierung – eine logische Schicht, die Unternehmensdaten über alle Systeme hinweg integriert. Doch noch immer ranken sich einige Mythen um die Datenvirtualisierung.

1. Datenvirtualisierung ist mit komplexen Abfragen auf großen Datenmengen überfordert
Hintergrund:
Noch vor einigen Jahren wurde Data Federation genutzt, um auf Daten aus verschiedenen Quellen zuzugreifen, ohne diese dabei zu kopieren. Allerdings wurden die Daten dabei nicht remote verarbeitet, sondern dafür in den Federation Server gezogen. Dies funktionierte nur schlecht bei der Verarbeitung großer Datenmengen oder komplexer Abfragen.

Realität: Lösungen für Datenvirtualisierung wie die Denodo Platform schreiben Anfragen so um, dass die Verarbeitung dorthin verlagert wird, wo sich die Daten befinden. Deshalb müssen große Datenmengen erst gar nicht erst durch das System bewegt werden. Zudem wird die Performance bei Abfragen für langsamere Datenquellen verbessert, indem zwischengespeicherte Daten aus dem Cache verwendet werden. Moderne Plattformen für Datenvirtualisierung sind daher durchaus in der Lage, komplexe Abfragen auf großen Datenmengen sehr schnell zu verarbeiten.

2. BI-Tools und Datenvirtualisierung sind austauschbar
Hintergrund:
Business-Intelligence-Tools bieten heute Funktionen für Data Blending, also um Daten aus verschiedenen Quellen miteinander zu kombinieren, zu bearbeiten und zu analysieren sowie daraus Reports für das Business zu erstellen. Zudem verfügen manche Tools auch über Funktionen für Data Modeling.

Realität: Zwar ermöglichen BI-Tools Data Blending und Reports. Sie sind aber in ihrer Funktionalität eingeschränkt, denn jedes Tool benötigt sein eigenes semantisches Datensilo. Die Verbindung zwischen unterschiedlichen Tools ist nicht gegeben, sodass Data Blending auf das Tool eines spezifischen Anbieters ausgerichtet ist. Datenvirtualisierung ist jedoch in der Lage, Daten aus nahezu allen Quellen mit einer Vielzahl von Konsumenten und Tools in einem unternehmensweiten Data-Fabric-Layer zu verbinden.

3. Wer einen Data Lake hat, braucht Datenvirtualisierung nicht
Hintergrund:
Data Lakes waren ursprünglich als Möglichkeit gedacht, um Daten, die typischerweise nicht in Datenbanken gespeichert sind, zu explorieren und nutzbar zu machen. Heute werden dort dagegen alle Unternehmensdaten gespeichert, analysiert und verarbeitet.

Realität: Data Lakes sind äußerst komplex. So sind dort häufig gar nicht alle Daten gespeichert, auch weil sich nicht alle Daten hineinkopieren lassen. Zudem verfügen Unternehmen oft über mehrere Data Lakes. Außerdem fehlt ihnen eine entscheidende Komponente, um für eine breite Anzahl an Nutzern überhaupt hilfreich zu sein – Data Delivery Services. Statt einfach auf die Daten zugreifen zu können, müssen Nutzer sie erst selbst im Data Lake finden. Datenvirtualisierung bietet dagegen Zugriff auf Daten aus Data Lakes und anderen Quellen in einer einzigen einheitlichen Schicht und hilft Nutzern mit einem Data Catalog, Daten im Data Lake zu finden und verstehen.

4. Wer ETL-Tools nutzt, braucht Datenvirtualisierung nicht
Hintergrund:
Unternehmen können mithilfe von ETL-Tools Daten aus verschiedenen Quellen extrahieren, transformieren und dann in eine Datenbank oder ein Data Warehouse laden.

Realität: ETL-Pipelines sind fragile Strukturen – kommt beispielsweise eine neue Datenquelle hinzu, bauen Unternehmen lieber eine neue Pipeline als die bestehenden zu verändern. Das führt einerseits zu Datensilos, was es für Nutzer schwieriger macht, benötigte Daten schnell zu finden und zu verarbeiten. Andererseits führt es zu Datenduplikaten, ein durchschnittliches Unternehmen hat zwölf oder mehr Kopien seiner Daten, die verteilt in der gesamten Architektur liegen. Bei Datenvirtualisierung verbleiben die Daten dagegen dort, wo sie sind, und werden nur in einer virtuellen Schicht dargestellt. Das spart Arbeit, Zeit und Speicherplatz.

5. Datenvirtualisierung führt zu einem Kontrollverlust bei den Daten
Hintergrund:
Datenvirtualisierung gibt allen Mitarbeitern Zugriff auf Unternehmensdaten, damit sie Analysen per Self-Service schnell und einfach selbst ausführen können. Damit geht aber der Überblick verloren, wer welche Daten wie nutzt. Außerdem fehlt vielen Mitarbeitern das Verständnis dafür, wie sich Anfragen auf Backend-Systeme auswirken und welche Kosten sie womöglich verursachen.

Realität: Plattformen für Datenvirtualisierung bieten zahlreiche Kontroll- und Governance-Funktionen, um den Zugang auf granularer Ebene zu regeln, für die Einschränkung von Anfragen – was beispielsweise Dauer, Prioritäten oder Zeilen im Ergebnis betrifft – und um den Umfang von Anfragen einzugrenzen, etwa durch die Nutzung von Filtern. Unternehmen können auch standardisierte, kuratierte Daten für die Analysen ihrer Mitarbeiter bereitstellen. (Denodo: ra)

eingetragen: 09.08.22
Newsletterlauf: 27.09.22

Denodo: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Leitfaden für eine erfolgreiche DRaaS-Auswahl

    Investitionen in DRaaS (Disaster-Recovery-as-a-Service) sind sinnvoll und zukunftsweisend, denn DRaaS hilft den Unternehmen, ihre IT-Systeme und Daten im Fall eines Datenverlusts schnell wiederherzustellen. Allerdings sollte man im Vorfeld eine gründliche Marktanalyse durchführen und sich über die Funktionsweise und Kosten der verschiedenen Lösungen informieren.

  • ERP-Software muss ein Teamplayer sein

    So wichtig ERP-Systeme auch sind, bei der Auswahl der richtigen Lösung und Anbieter gibt es für Unternehmen eine Reihe von Aspekten zu beachten - schließlich bringen nur passgenaue und ausgereifte Systeme auch die erwünschten Vorteile. IFS erklärt, worauf es bei der Suche ankommt.

  • Grundlage für zukunftssichere Rechenzentren

    Rechenzentren sind das Rückgrat unserer digitalen Welt. Betreiber dieser Infrastrukturen stehen dabei vor immensen Herausforderungen: Sie müssen nicht nur den ununterbrochenen Betrieb und höchste Sicherheitsstandards sicherstellen, sondern auch strengere Umwelt- und Effizienzkriterien einhalten.

  • Cloud-basierte Tests

    Mit der Digitalisierung steigt das Datenvolumen und der Energieverbrauch. Daher stehen Unternehmen jetzt vor der Herausforderung, ihre IT nachhaltiger zu gestalten. Auch das Qualitätsmanagement kann dazu einen wertvollen Beitrag leisten, indem es den CO2-Fußabdruck von Software verringert.

  • Was ist der richtige Cloud-Speicher für KMU?

    Verschiedene Arten von Unternehmen haben unterschiedliche IT-Anforderungen. So haben kleine und mittelständische Unternehmen natürlich nicht die gleichen Anforderungen wie große internationale Unternehmen.

  • ITAM on-premises versus Software-as-a-Service

    IT Asset Management (ITAM) schafft die Basis für Cybersecurity, Kostenkontrolle und effizientes IT-Management. Doch vor allem im Mittelstand fehlen häufig Manpower und Expertise, eine ITAM-Lösung inhouse zu betreiben. Software-as-a-Service-Angebote versprechen Abhilfe.

  • Steigende Gefahr aus der Cloud?

    Cloud Computing hat sich in den letzten Jahren als zentrales Element der digitalen Transformation etabliert. Unternehmen jeder Größe nutzen Cloud-Dienste, um ihre IT-Infrastruktur flexibler und effizienter zu gestalten.

  • Private AI verfolgt einen Plattform-Ansatz

    Der Einzug der generativen KI (GenAI) in die breite Öffentlichkeit hat das KI-Wachstum in Unternehmen vergangenes Jahr beschleunigt. Motiviert durch Wettbewerbsdruck und potenzielle Vorteile forcieren Unternehmen und Regierungen ihre KI-Strategie.

  • Mangelnde Vorbereitung auf SaaS-Ausfälle

    Der Hycu State of SaaS Resilience 2024 Report deckte zuletzt kritische Datensicherungslücken auf, da 70 Prozent der Unternehmen Datenverluste erleiden. Trotzdem verlassen sich 60 Prozent immer noch auf ihre Software-as-a-Service (SaaS)-Anbieter, um sich zu schützen, und setzen sich damit weiteren Risiken aus.

  • KI gewinnbringend einsetzen

    Das KI-Potenzial ist praktisch unerschöpflich. Doch um es richtig zu nutzen und daraus echte Wettbewerbsvorteile zu generieren, muss vorab die Bereitschaft des Unternehmens dafür geklärt werden. Der IT-Dienstleister CGI erklärt, warum der Readiness-Check so wichtig ist, was er genau analysiert und was mit den daraus gewonnenen Erkenntnissen passiert.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen