Sie sind hier: Startseite » Markt » Tipps und Hinweise

Datenstrategie braucht mehr als Tools


Sechs Erfolgsfaktoren, wie Unternehmen Mehrwert aus Kundendaten ziehen
Am Anfang einer Datenstrategie gilt es, alle externen und internen Datensilos und Quellen zu identifizieren, die im engeren und weiteren Sinne Relevanz für die Geschäftsprozesse entfalten


Die Menschheit produziert 2,5 Trillionen Bytes pro Tag. In den letzten zwei Jahren wurden mehr Daten gesammelt, als in der gesamten Menschheitsgeschichte zusammen. Für jeden Menschen entstehen pro Sekunde 1,7 Megabyte neue Rohinformationen. Kurzum: Die Datenflut ist unaufhaltsam. Wobei diese Datenflut nicht automatisch bedeutet, dass daraus auch Wissen entsteht. Daten und Informationen an sich haben zunächst keinen Wert. Sie sind wie Rohdiamanten, die erst durch ihre Verarbeitung Brillanz gewinnen. Auch für Unternehmen entfalten Kundendaten erst ihren Wert, wenn sie ausgewertet einen Erkenntnisgewinn liefern, der zu neuen Handlungsoptionen führt. Das bedeutet, dass Unternehmen eine Datenstrategie brauchen, die ihre Geschäftsprozesse fundiert und leitet.

Auch wenn heute viele Unternehmen glauben, sie würden ihre selbst gesammelten Kundendaten mit den vorhandenen Tools angemessen auswerten, entsteht dadurch noch keine zeitgemäße Datenstrategie. Vielmehr brauchen Management und Fachabteilungen eine umfassende Analyse, über welche Daten sie bereits verfügen und welche sie darüber hinaus benötigen, um alle Aspekte zu ihrem Markt, ihrem Wettbewerb und ihren Kunden abzudecken. Sie brauchen ein Datenmodell, welche Daten in welcher Kombination geeignet sind, um ihre Geschäftsprozesse optimal zu unterstützen und Mehrwert daraus zu generieren.

dunnhumby, einer der weltweit führenden Anbieter von Datenanalysen für den Handel, hat sechs Erfolgsfaktoren identifiziert, wie Unternehmen Mehrwert aus ihren Kundendaten ziehen können:

1. Die richtigen Daten und Quellen identifizieren
Am Anfang einer Datenstrategie gilt es, alle externen und internen Datensilos und Quellen zu identifizieren, die im engeren und weiteren Sinne Relevanz für die Geschäftsprozesse entfalten. Welche Daten benötigen Management und Fachabteilungen, um Key Performance Indicators (KPI) aufzustellen, mit denen sie ihre Erfolge messen können? Und welche KPIs benötigen sie, um ihre Entscheidungsprozesse zu fundieren und neue Geschäftsprozesse zu etablieren?

2. DSGVO-konforme Data Governance definieren
Für die Zusammenführung und Auswertung von Daten sollten Unternehmen Richtlinien und Prozesse definieren, die die Datenschutzgrundverordnung beachten. Für das Vertrauen der Kunden ist es erforderlich, die Datensicherheit über die komplette Prozesskette zu gewährleisten. Alle Mitarbeiter sollten durch Schulungen auf die Data Governance verpflichtet werden.

3. Datenarchitektur entwickeln
Für die Auswertung verschiedener Datenquellen brauchen Unternehmen eine Dokumentation, wo und wie Daten gespeichert, integriert und genutzt werden. Es gilt, einen "Single Point of Truth" zu schaffen, damit alle Datenquellen stets aktuell, valide und konsistent sind, um sie für die regelmäßige Zusammenführung und Auswertung bereitzustellen.

4. Eigene Datensilos und externe Datenquellen integriert analysieren
Eigene Kundendaten liegen oft verstreut in isolierten Datensilos. Diese gilt es zusammenzuführen und mit externen Datenquellen für die Auswertung zu verbinden. Zum besseren Verständnis von Kundenbedürfnissen sind alle Kanäle zu integrieren und in einer technisch innovativen sowie rechtlich zulässigen Weise aufzubereiten.

5. Personelle Ressourcen für Umsetzung der Datenstrategie bereitstellen
Noch wichtiger als die Entwicklung einer Datenstrategie ist für Unternehmen die Schaffung der personellen Grundlagen für die Umsetzung. Kompetenzprofile, Qualifikationen und Zusammensetzung der Teams sowie ihre Arbeitsstrukturen müssen passen, um für Management und Fachabteilungen aus den Daten die richtigen Analysen liefern zu können.

6. Geschäftsprozesse für die Daten-Monetarisierung etablieren
Denn es gilt nach der Umsetzung der Datenstrategie, Analysen zu liefern, die neue Geschäftsprozesse ermöglichen. Durch die Auswertung von Marketing- und Vertriebsmaßnahmen entstehen idealerweise neue Monetarisierungs-Ansätze, die ohne die Datenstrategie bisher nicht identifizierbar waren.

Regelmäßiger Data Healthcheck für die Weiterentwicklung der Datenstrategie
Um aus Kundendaten Mehrwert zu generieren, sind diese sechs Erfolgsfaktoren aber nur der Anfang. "Eine erfolgreiche Datenstrategie benötigt eine kontinuierliche Überprüfung und Verbesserung. Ein regelmäßiger Data Healthcheck zur Optimierung der Prozesse minimiert das Risiko und maximiert den Nutzen der Datenanalyse", resümiert Jurgen van Leeuwen, Director dunnhumby Germany. Denn nur mit einer soliden Datenstrategie können Unternehmen mehr aus ihren Daten herausholen und Wertschöpfung generieren, ihr Verständnis für ihre Kunden verbessern und eine messbare Wertsteigerung für ihr Unternehmen realisieren.
(dunnhumby: ra)

eingetragen: 19.12.18
Newsletterlauf: 13.02.19

dunnhumby: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

  • Ausfallkosten nur Spitze des Eisbergs

    Ungeplante Ausfälle in Rechenzentren sind seltener geworden, doch wenn sie eintreten, können sie verheerende Folgen haben. Laut der Uptime Institute Studie 2023 meldeten 55 Prozent der Betreiber in den vorangegangenen drei Jahren mindestens einen Ausfall - jeder zehnte davon war schwerwiegend oder kritisch. Zu den Ursachen gehören unter anderem Wartungsmängel, die sich mit einer strukturierten Instandhaltungsstrategie vermeiden lassen.

  • GenAI mächtig, aber nicht immer notwendig

    Jetzt auf den Hype rund um KI-Agenten aufzuspringen, klingt gerade in Zeiten des Fachkräftemangels für Unternehmen verlockend. Doch nicht alles, was glänzt, ist Gold. Viele Unternehmen investieren gerade in smarte Assistenten, Chatbots und Voicebots - allerdings scheitern einige dieser Projekte, ehe sie richtig begonnen haben: Schlecht umgesetzte KI-Agenten sorgen eher für Frust als für Effizienz, sowohl bei Kunden als auch bei den eigenen Mitarbeitern. Dabei werden immer wieder die gleichen Fehler gemacht. Besonders die folgenden drei sind leicht zu vermeiden.

  • Konsequent auf die Cloud setzen

    In der sich stetig wandelnden digitalen Welt reicht es nicht aus, mit den neuesten Technologien nur Schritt zu halten - Unternehmen müssen proaktiv handeln, um Innovationsführer zu werden. Entsprechend der neuen Studie "Driving Business Outcomes through Cost-Optimised Innovation" von SoftwareOne können Unternehmen, die gezielt ihre IT-Kosten optimieren, deutlich besser Innovationen vorantreiben und ihre Rentabilität sowie Markteinführungsgeschwindigkeit verbessern.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Der IT-Dienstleister CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • Datenschutz als Sammelbegriff

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Google Workspace trifft Microsoft 365

    Die Anforderungen an den digitalen Arbeitsplatz wachsen ständig. Wie können Unternehmen mit der Zeit gehen, ohne auf Sicherheit verzichten zu müssen? Eine Antwort könnte sein, Google Workspace an die Seite der Microsoft-365-Umgebung zu stellen. Welche Möglichkeiten eröffnet diese Kombination?

  • NIS2 trifft auf SaaS-Infrastruktur

    Die NIS2 (Network Information Security Directive)-Richtlinie zur Sicherheit von Netzwerken setzt neue Maßstäbe für die Cybersicherheit. Sie ist bekanntlich für öffentliche und private Einrichtungen in 18 Sektoren bindend, die entweder mindestens 50 Beschäftigte haben oder einen Jahresumsatz und eine Jahresbilanz von mindestens 10 Millionen Euro.

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen